Thursday 28 April 2016

May 6 - New  Moon. The Moon will locate on the same side of the Earth as the Sun and will not be visible in the night sky. This phase occurs at 19:29 UTC. This is the best time of the month to observe faint objects such as galaxies and star clusters because there is no moonlight to interfere.




May 6, 7 - Eta Aquarids Meteor Shower. The Eta Aquarids is an above average shower, capable of producing up to 60 meteors per hour at its peak. Most of the activity is seen in the Southern Hemisphere. In the Northern Hemisphere, the rate can reach about 30 meteors per hour. It is produced by dust particles left behind by comet Halley, which has known and observed since ancient times. The shower runs annually from April 19 to May 28. It peaks this year on the night of May 6 and the morning of the May 7. The new moon will ensure dark skies this year for what could be an excellent show. Best viewing will be from a dark location after midnight. Meteors will radiate from the constellation Aquarius, but can appear anywhere in the sky.




May 9 - Rare Transit of Mercury Across the Sun. The planet Mercury will move directly between the Earth and the Sun. Viewers with telescopes and approved solar filters will be able to observe the dark disk of the planet Mercury moving across the face of the Sun. This is an extremely rare event that occurs only once every few years. There will be one other transit of Mercury in 2019 and then the next one will not take place until 2039. This transit will be visible throughout North America, Mexico, Central America, South America, and parts of Europe, Asia, and Africa. The best place to view this event in its entirety will be the eastern United States and eastern South America. (Transit Visibility Map and Information)




May 14 - International Astronomy Day. Astronomy Day is an annual event intended to provide a means of interaction between the general public and various astronomy enthusiasts, groups and professionals. The theme of Astronomy Day is "Bringing Astronomy to the People," and on this day astronomy and stargazing clubs and other organizations around the world will plan special events. You can find out about special local events by contacting your local astronomy club or planetarium. You can also find more about Astronomy Day by checking the Web site for the Astronomical League.



May 21 - Full Moon, Blue Moon. The Moon will be located on the opposite side of the Earth as the Sun and its face will be will be fully illuminated. This phase occurs at 21:15 UTC. This full moon was known by early Native American tribes as the Full Flower Moon because this was the time of year when spring flowers appeared in abundance. This moon has also been known as the Full Corn Planting Moon and the Milk Moon. Since this is the third of four full moons in this season, it is known as a blue moon. This rare calendar event only happens once every few years, giving rise to the term, “once in a blue moon.” There are normally only three full moons in each season of the year. But since full moons occur every 29.53 days, occasionally a season will contain 4 full moons. The extra full moon of the season is known as a blue moon. Blue moons occur on average once every 2.7 years.



May 22 - . The red planet will be at its closest approach to Earth and its face will be fully illuminated by the Sun. It will be brighter than any other time of the year and will be visible all night long. This is the best time to view and photograph Mars. A medium-sized telescope will allow you to see some of the dark details on the planet's orange surface.




June 3 - Saturn at Opposition. The ringed planet will be at its closest approach to
Earth and its face will be fully illuminated by the Sun. It will be brighter than any other time of the year and will be visible all night long. This is the best time to view and photograph Saturn and its moons. A medium-sized or larger telescope will allow you to see Saturn's rings and a few of its brightest moons.




June 5 - New Moon. The Moon will located on the same side of the Earth as the Sun and will not be visible in the night sky. This phase occurs at 02:59 UTC. This is the best time of the month to observe faint objects such as galaxies and star clusters because there is no moonlight to interfere.



June 5 - Mercury at Greatest Western Elongation. The planet Mercury reaches greatest western elongation of 24.2 degrees from the Sun. This is the best time to view Mercury since it will be at its highest point above the horizon in the morning sky. Look for the planet low in the eastern sky just before sunrise.


June 20 - Full Moon. The Moon will be located on the opposite side of the Earth as the Sun and its face will be will be fully illuminated. This phase occurs at 11:02 UTC. This full moon was known by early Native American tribes as the Full Strawberry Moon because it signaled the time of year to gather ripening fruit. It also coincides with the peak of the strawberry harvesting season. This moon has also been known as the Full Rose Moon and the Full Honey Moon.



June 21 - June Solstice. The June solstice occurs at 22:34 UTC. The North Pole of the earth will be tilted toward the Sun, which will have reached its northernmost position in the sky and will be directly over the Tropic of Cancer at 23.44 degrees north latitude. This is the first day of summer (summer solstice) in the Northern Hemisphere and the first day of winter (winter solstice) in the Southern Hemisphere.



July 4 - New Moon. The Moon will located on the same side of the Earth as the Sun and will not be visible in the night sky. This phase occurs at 11:01 UTC. This is the best time of the month to observe faint objects such as galaxies and star clusters because there is no moonlight to interfere.



July 19 - Full Moon. The Moon will be located on the opposite side of the Earth as the Sun and its face will be will be fully illuminated. This phase occurs at 22:57 UTC. This full moon was known by early Native American tribes as the Full Buck Moon because the male buck deer would begin to grow their new antlers at this time of year. This moon has also been known as the Full Thunder Moon and the Full Hay Moon.



July 28, 29 - Delta Aquarids Meteor Shower. The Delta Aquarids is an average shower that can produce up to 20 meteors per hour at its peak. It is produced by debris left behind by comets Marsden and Kracht. The shower runs annually from July 12 to August 23. It peaks this year on the night of July 28 and morning of July 29. The second quarter moon will block most of the fainter meteors this year but if you are patient you should still be able to catch quite a few good ones. Best viewing will be from a dark location after midnight. Meteors will radiate from the constellation Aquarius, but can appear anywhere in the sky.




Juno (spacecraft)

Juno is a NASA New Frontiers mission currently en route to the planet Jupiter. Juno was launched from Cape Canaveral Air Force Station on August 5, 2011 and will arrive on July 4, 2016. The spacecraft is to be placed in a polar orbit to study Jupiter's composition, gravity field, magnetic field, and polar magnetosphere. Juno will also search for clues about how the planet formed, including whether it has a rocky core, the amount of water present within the deep atmosphere, how its mass is distributed, and its deep winds, which can reach speeds of 618 kilometers per hour (384 mph).



Juno will be the second spacecraft to orbit Jupiter, following the Galileo probe which orbited from 1995–2003.



Juno is on a five-year cruise to Jupiter, with arrival expected on 4 July 2016. The spacecraft will travel over a total distance of roughly 2.8 billion kilometers (18.7 AU; 1.74 billion miles). The spacecraft will orbit Jupiter 37 times over the course of 20 months. Juno's trajectory used a gravity assist speed boost from Earth, accomplished through an Earth flyby two years (October 2013) after its August 5, 2011 launch. In July 2016, the spacecraft will perform an orbit insertion burn to slow the spacecraft enough to allow capture into a 14-day polar orbit.


PROBES

Instrument Name
Abbr.
Description and scientific objective
MWR
The microwave radiometer comprises six antennas mounted on two of the sides of the body of the probe. They will perform measurements of electromagnetic waves on frequencies in the microwave range: 600 MHz, 1.2 GHz, 2.4 GHz, 4.8 GHz, 9.6 GHz and 22 GHz. Only the microwave frequencies are able to pass through the thickness of the Jovian atmosphere. The radiometer will measure the abundance of water and ammonia in the deep layers of the atmosphere up to 200 bar pressure or 500 to 600 km deep. The combination of different wavelengths and the emission angle should allow to obtain a temperature profile at various levels of the atmosphere. The data collected will determine how deep is the atmospheric circulation.
JIRAM
The spectrometer mapper JIRAM, operating in the near infrared (between 2 and 5 μm), conducts surveys in the upper layers of the atmosphere to a depth of between 50 and 70 km where the pressure reaches 5 to 7 bars. JIRAM will provide images of the aurora in the wavelength of 3.4 μm in regions with abundant H3+ ions. By measuring the heat radiated by the atmosphere of Jupiter, JIRAM can determine how clouds with water are flowing beneath the surface. It can also detectmethanewater vaporammonia and phosphine. It was not required that this device meets the radiation resistance requirements.
MAG
The magnetic field investigation has three goals: mapping of the magnetic field, determining the dynamics of Jupiter's interior, and determination of the three-dimensional structure of the polar magnetosphere. The magnetometer experiment consists of the Flux Gate Magnetometer (FGM), which will measure the strength and direction of the magnetic field lines, and the Advanced Stellar Compass (ASC), which will monitor the orientation of the magnetometer sensors. 
Gravity Science
GS
The purpose of measuring gravity by radio waves is to establish a map of the distribution of mass inside Jupiter. The uneven distribution of mass in Jupiter induces small variations in gravity all along the orbit followed by the probe when it runs closer to the surface of the planet. These gravity variations drive small probe velocity changes. The purpose of radio science is to detect the Doppler effect on radio broadcasts issued by Juno toward Earth in Ka band and X band, which are frequency ranges that can conduct the study with fewer disruptions related to the solar wind or the ionosphere.
Jovian Auroral Distribution Experiment
JADE
The energetic particle detector JADE will measure the angular distribution, energy, and the velocity vector of ions and electrons at low energy (ions between 13 eV and 20 KeV, electrons of 200 eV to 40 KeV) present in the aurora of Jupiter. On JADE, like JEDI, the electron analyzers are installed on three sides of the upper plate which allows a measure of frequency three times higher.
JEDI
The energetic particle detector JEDI will measure the angular distribution and the velocity vector of ions and electrons at highenergy (ions between 20 keV and 1000 keV, electrons from 40 keV to 500 keV) present in the polar magnetosphere of Jupiter. JEDI has three identical sensors dedicated to the study of particular ions of hydrogenheliumoxygen and sulfur.
Radio and Plasma Wave Sensor
Waves
This instrument will identify the regions of auroral currents that define Jovian radio emissions and acceleration of the auroral particles by measuring the radio and plasma spectra in the auroral region.
Ultraviolet Imaging Spectrograph
UVS
UVS will record the wavelength, position and arrival time of detected ultraviolet photons during the time when the spectrograph slit views Jupiter during each turn of the spacecraft. Using a 1024 × 256 micro channel plate detector, it will provide spectral images of the UV auroral emissions in the polar magnetosphere. 
JCM
A visible light camera/telescope, included in the payload to facilitate education and public outreach. It will operate for only seven orbits around Jupiter because of the planet's damaging radiation and magnetic field.